Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Virus Res ; 296: 198345, 2021 04 15.
Article in English | MEDLINE | ID: covidwho-1096264

ABSTRACT

Emergence of novel SARS-CoV-2 lineages are under the spotlight of the media, scientific community and governments. Recent reports of novel variants in the United Kingdom, South Africa and Brazil (B.1.1.28-E484K) have raised intense interest because of a possible higher transmission rate or resistance to the novel vaccines. Nevertheless, the spread of B.1.1.28 (E484K) and other variants in Brazil is still unknown. In this work, we investigated the population structure and genomic complexity of SARS-CoV-2 in Rio Grande do Sul, the southernmost state in Brazil. Most samples sequenced belonged to the B.1.1.28 (E484K) lineage, demonstrating its widespread dispersion. We were the first to identify two independent events of co-infection caused by the occurrence of B.1.1.28 (E484K) with either B.1.1.248 or B.1.91 lineages. Also, clustering analysis revealed the occurrence of a novel cluster of samples circulating in the state (named VUI-NP13L) characterized by 12 lineage-defining mutations. In light of the evidence for E484K dispersion, co-infection and emergence of VUI-NP13 L in Rio Grande do Sul, we reaffirm the importance of establishing strict and effective social distancing measures to counter the spread of potentially more hazardous SARS-CoV-2 strains.


Subject(s)
COVID-19/epidemiology , Coinfection/epidemiology , SARS-CoV-2/genetics , Brazil/epidemiology , COVID-19/prevention & control , COVID-19/transmission , Cluster Analysis , Humans , Polymorphism, Single Nucleotide
2.
Science ; 369(6508): 1255-1260, 2020 09 04.
Article in English | MEDLINE | ID: covidwho-675945

ABSTRACT

Brazil currently has one of the fastest-growing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemics in the world. Because of limited available data, assessments of the impact of nonpharmaceutical interventions (NPIs) on this virus spread remain challenging. Using a mobility-driven transmission model, we show that NPIs reduced the reproduction number from >3 to 1 to 1.6 in São Paulo and Rio de Janeiro. Sequencing of 427 new genomes and analysis of a geographically representative genomic dataset identified >100 international virus introductions in Brazil. We estimate that most (76%) of the Brazilian strains fell in three clades that were introduced from Europe between 22 February and 11 March 2020. During the early epidemic phase, we found that SARS-CoV-2 spread mostly locally and within state borders. After this period, despite sharp decreases in air travel, we estimated multiple exportations from large urban centers that coincided with a 25% increase in average traveled distances in national flights. This study sheds new light on the epidemic transmission and evolutionary trajectories of SARS-CoV-2 lineages in Brazil and provides evidence that current interventions remain insufficient to keep virus transmission under control in this country.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Basic Reproduction Number , Bayes Theorem , Betacoronavirus/classification , Brazil/epidemiology , COVID-19 , COVID-19 Testing , Cities/epidemiology , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Europe , Evolution, Molecular , Genome, Viral , Humans , Models, Genetic , Models, Statistical , Pandemics/prevention & control , Phylogeny , Phylogeography , Pneumonia, Viral/prevention & control , Pneumonia, Viral/virology , SARS-CoV-2 , Spatio-Temporal Analysis , Travel , Urban Population
SELECTION OF CITATIONS
SEARCH DETAIL